

# Identification of Long Island Mosquitoes Collected in a Wetlands Remediation Sump

Authors: Marisa Calderone<sup>1</sup>, Bethany Fanning<sup>1</sup>
Mentors: Mary Kroll<sup>1</sup>; Cristina Fernández- Marco<sup>2</sup>; Sharon Pepenella<sup>3</sup>
<sup>1</sup>West Islip High School; <sup>2</sup>Cold Spring Harbor Laboratory's DNA Learning Center



CSH Cold Spring Harbor Laborator
DNA Learning Center

## Abstract

Approximately 176 species of mosquitoes are found in the United States. It is important to identify if there is a dangerous local species. Recently on Long Island, mosquitoes have been transmitting diseases like West Nile Virus. A BG-Sentinel trap provided by Suffolk County Department of Health was used to collect our mosquitoes. Traps were placed in a wetlands remediation sump for 24 hours. DNA was extracted from each mosquito, the CO1 gene was amplified using PCR, and verified using gel electrophoresis. Each positive result was sent to a lab for Sanger sequencing. DNA Subway Blue Line was used to analyze DNA sequences of samples collected. Results showed 50% were identified as *Aedes albopictus*, 10% were *Sciara kitakamiensis*, and 10% were *Sympycininae*. After barcoding, it was discovered not all species were classified as mosquitoes. 30% were *Rhipidia chenwenyoungi* which differentiates at the family level. Identifying these organisms can help researchers in the future learn more, and determine if they threaten human health.

## Introduction and Hypothesis

- The goal in studying the biodiversity of mosquitoes is to identify known and potentially unknown mosquitoes that could pose a risk to human health by spreading diseases that can result in sickness or even death.
- "West Nile virus is the most common mosquito-borne disease in the U.S. It can be spread by the *Culex pipiens* mosquito, also known as the northern house mosquito, which is common in Suffolk County" ("Suffolk County Government", 2016, para. 3).
- Barcoding mosquitoes is necessary as the differences between some species cannot be distinguished anatomically after trapping.
- Research Question: How does the biodiversity of mosquitoes on Long Island pose a risk to human health?
- Hypothesis: There will be a small range of diversity regarding the type of mosquitoes collected.



Figure 1: This red pin on the map of Long Island indicates where the mosquitoes were caught, Wetlands Remediation Sump (Google Maps, 2018).

### Results

Table 1: Metadata and DNA subway data for samples sequenced

| Sample ID | Trap Name   | Aln.<br>Length | Bit Score | e value | #<br>mismatches | Scientific Name        |
|-----------|-------------|----------------|-----------|---------|-----------------|------------------------|
| PDC-001   | BG Sentinel | 542            | 765       | 0       | 47              | Rhipidia chenwenyoungi |
| PDC-002   | BG Sentinel | 516            | 931       | 0       | 0               | Sciara kitakamiensis   |
| PDC-003   | BG Sentinel | 552            | 783       | 0       | 47              | Rhipidia chenwenyoungi |
| PDC-004   | BG Sentinel | 511            | 922       | 0       | 0               | Sympycninae sp.        |
| PDC-005   | BG Sentinel | 529            | 762       | 0       | 49              | Rhipidia chenwenyoungi |
| PDC-007   | BG Sentinel | 542            | 962       | 0       | 0               | Aedes albopictus       |
| PDC-008   | BG Sentinel | 505            | 902       | 0       | 0               | Aedes sp.              |
| PDC-010   | BG Sentinel | 609            | 1099      | 0       | 0               | Aedes albopictus       |
| PDC-013   | BG Sentinel | 521            | 940       | 0       | 0               | Aedes albopictus       |
| PDC-017   | BG Sentinel | 508            | 917       | 0       | 0               | Aedes albopictus       |

Table 2: percent similarities between collected samples, BLAST samples, and reference samples

|             | Consensus | PDC-<br>010 | PDC-<br>002 | PDC-<br>008 | Aedes<br>albopictus | PDC-<br>007 | PDC-<br>013 | PDC-<br>017 | PDC-<br>004 | Sympycninae | Rhipidia | PDC-<br>001 | PDC-<br>004 | PDC-<br>003 | PDC-<br>005 |
|-------------|-----------|-------------|-------------|-------------|---------------------|-------------|-------------|-------------|-------------|-------------|----------|-------------|-------------|-------------|-------------|
| Consensus   | -         | 64.83       | 89.73       | 89.73       | 92.28               | 92.26       | 86.03       | 89.25       | 88.19       | 91.98       | 91.98    | 90.77       | 91.33       | 91.3        | 90.74       |
| PDC-010     | 64.83     | -           | 54.1        | 54.1        | 55.04               | 55.04       | 50.21       | 53.75       | 53.67       | 53.62       | 53.62    | 55.16       | 55.36       | 55.36       | 55          |
| PDC-002     | 89.73     | 54.1        | -           | 100         | 84.46               | 84.46       | 70.83       | 81.4        | 80.45       | 85.52       | 85.52    | 85.08       | 83.53       | 83.53       | 83.11       |
| PDC-008     | 89.73     | 54.1        | 100         | -           | 84.46               | 84.46       | 77.84       | 81.4        | 80.45       | 85.52       | 85.52    | 85.08       | 83.53       | 83.53       | 83.11       |
| Aedes albo  | 92.28     | 55.04       | 84.46       | 84.46       | -                   | 100         | 77.84       | 89.88       | 89.94       | 86.77       | 86.77    | 85.52       | 84.92       | 84.92       | 84.43       |
| PDC-007     | 92.26     | 55.04       | 84.36       | 84.46       | 100                 | -           | 85.22       | 89.88       | 89.94       | 86.77       | 86.77    | 85.52       | 84.92       | 84.92       | 84.43       |
| PDC-013     | 86.03     | 50.21       | 77.58       | 77.58       | 85.22               | 85.4        | 85.4        | 93.32       | 92.96       | 80.76       | 80.76    | 78.27       | 79.23       | 79.28       | 78.5        |
| PDC-017     | 89.25     | 53.75       | 81.4        | 82.4        | 89.88               | 89.88       | -           | -           | 99.8        | 85.13       | 85.13    | 81.38       | 81.77       | 81.77       | 81.47       |
| PDC-004     | 88.19     | 53.67       | 80.45       | 80.45       | 89.94               | 89.94       | 93.32       | 99.8        | -           | 84.46       | 84.46    | 80.4        | 80.99       | 80.99       | 80.56       |
| Sympycninae | 91.98     | 53.62       | 85.52       | 85.52       | 86.77               | 86.77       | 92.97       | 85.13       | 86.5        | -           | 100      | 86.69       | 87.67       | 87.67       | 87.28       |
| Rhipidia    | 91.98     | 53.62       | 85.52       | 85.52       | 86.77               | 86.77       | 80.76       | 85.13       | 86.5        | 100         | -        | 86.69       | 87.67       | 87.67       | 87.28       |
| PDC-001     | 90.77     | 55.16       | 85.08       | 85.08       | 85.52               | 85.52       | 80.76       | 81.38       | 85.61       | 86.69       | 86.69    | -           | 91.33       | 91.33       | 90.72       |
| PDC-004     | 91.33     | 55.36       | 83.53       | 83.53       | 84.92               | 84.93       | 78.27       | 81.77       | 87.08       | 87.67       | 87.67    | 91.33       | -           | 100         | 99.62       |
| PDC-003     | 91.3      | 55.36       | 83.53       | 83.53       | 84.92               | 84.93       | 79.23       | 81.77       | 87.14       | 87.67       | 87.67    | 91.33       | 100         | -           | 99.62       |
| PDC-005     | 90.74     | 55          | 83.11       | 83.11       | 84.43               | 84.43       | 79.28       | 81.47       | 80.56       | 87.28       | 87.28    | 90.72       | 99.62       | 99.62       | _           |

# Figure 9: Sample PDC-013 Aedes albopictus PDC-003 PDC-004 PDC-002 RR766034 I ||sciara\_bitakamiens Honey\_Bee-Hymenoptera PDC-005 PDC-005 RT90063. ||phipidia\_chemwenyo RR695448. ||sympyominae\_sp. PDC-004 PDC-004 PDC-004 PDC-004 PDC-006 Rripidia chemwenyoungi Figure 10: Sample PDC-002 Sciara kitakamiensis Figure 11: Sample PDC-001 Rhipidia chemwenyoungi Figure 12: Sample PDC-004 Sympyoninae sp.

Figure 8: Phylogenetic tree above shows similarities between barcoded samples (PDC), BLAST samples, and reference samples. Figure created in DNA Subway.



Figure 13: Barcode of samples PDC-001 – PDC-017 compared to BLAST samples and a consensus Figure created in DNA Subway.

# Methods

DNA extraction:

Separation of DNA

- 34 mosquitoes collected
- 20 selected for barcoding process
- Selected samples were scientifically photographed with a ken-a-vision microscope camera



from the rest of the cell contents

PCR: series of heating sample DNA to make copies of CO1 gene

Gel Electrophoresis: to visualize success of DNA copying



DNA Subway Blue Line was used for trimming and comparing sequences using BLAST.



Figure 5: Gel electrophoresis results of samples PDC-001-008. All results were sent for sequencing except for PDC-006 which showed no DNA amplification. Photo courtesy of Mrs. Kroll.



Figure 6: Sample PDC-001 electropherogram Photo produced in DNA Subway.



Figure 7: percentages of the collected organisms by taxonomic classification; 50% of the collected samples were the mosquito *Aedes albopictus*. Graph created by researchers.

# Conclusions/ Future Research

- DNA Subway Blue Line was used to analyze the DNA sequence of each mosquito collected. The samples were then compared to other already published species.
- 50 percent of the mosquitoes sequenced were identified as *Aedes albopictus*, 30 percent were *Rhipidia chenwenyoungi*, 10 percent were *Sciara kitakamiensis*, and 10 percent were *Sympycininae*.
- It was discovered that not all species were classified as mosquitoes. The *Rhipidia chenwenyoungi* is differentiated from a mosquito at the family level.
- Knowing the identification of these organisms can help researchers in the future to learn more about them and if they are a possible threat to human health.

## References

Batovska, J., Blacket, M. J., Brown, K., & Lynch, S. E. (2016, March 3). Molecular Identification of Mosquitoes (Diptera: Culicidae) in Southeastern Australia. Retrieved April 11, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/27217948

Biogents. (n.d.). The BG-Sentinel: Biogents' mosquito trap for researchers. Retrieved September 25, 2017, from https://www.bg-sentinel.com/

Hancock, J. W. (n.d.). CDC Gravid Trap. Retrieved September 25, 2017, from http://johnwhock.com/products/mosquito-sandfly-traps/cdc-gravid-trap/

Newhouse, V. F., Chamberlain, R. W., Johnston, J. G., & Sudia, W. D. (1966). Use of dry ice to increase mosquito catches of the CDC miniature light trap. *Mosq. News*, *26*(1), 30-35.

# Acknowledgements

Thank you to our research advisors, West Islip Schools, Suffolk County Department of Health, and Barcode Long Island researchers



Figure 2:
BG-Sentinel trap
provided by the
Suffolk County
Department of
Health. Photo
taken by
researchers.



Figure 3:
Sample caught in BGSentinel trap. Photo
taken by Marisa
Calderone using Ken-avision microscope with
digital camera.



Figure 4:
Extracting DNA from mosquitoes in the lab. Photo courtesy of Mrs. Kroll.